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Abstract—Pulse Doppler radars measure both the targets
distance to the transceiver and their radial velocity, through
the estimation of the time delays and Doppler frequencies,
respectively. This digital processing is traditionally performed
on samples of the received signal at its Nyquist rate, which
can be prohibitively high. Overcoming the rate bottleneck, sub-
Nyquist sampling methods have been proposed that break the link
between radar signal bandwidth and sampling rate. In this work,
we extend these methods in two directions. First, we allow for
a reduced time-on-target by transmitting non-uniformly spaced
pulses. Second, we pave the way to sub-Nyquist cognitive radar
by considering transmitted and received pulses with dynamic
support composed of several narrow bands. Both software and
hardware simulations demonstrate reduced time-on-target and
dynamic transmitted signal support.

I. INTRODUCTION

Radar is a remote-sensing system widely used for both
military and civilian purposes. In this work, we focus on pulse
Doppler radar, which emits a periodic series of pulses; the
pulse-to-pulse interval is referred to as the pulse repetition
interval (PRI). Following the Swerling-0 model [1], targets are
non-fluctuating point targets, sparsely populated in the radar
unambiguous time-frequency region: delays up to the PRI and
Doppler frequencies up to its reciprocal. After reflecting off the
targets, the pulses propagate back to the receiver. We consider
a monostatic radar, composed of a single transceiver, that is
the transmitter and receiver are collocated.

Classic radar processing [1], [2] samples and processes the
received signal at its Nyquist rate. A traditional receiver is
composed of either an analog matched filter (MF) followed
by a high rate analog to digital converter (ADC) or in modern
systems, an ADC followed by a digital MF. Spectral analysis is
then conducted along the slow time dimension, namely across
the pulses, typically using the digital Fourier transform (DFT).
The pulse Doppler processing results in a data matrix in which
the dimensions are fast time and Doppler frequency, or delay-
Doppler map. Detection processes, such as peak detection, can
then be performed on the recovered map.

Unfortunately, Nyquist frequencies of radar signals can be
very high, up to hundreds of MHz or even several GHz. Such
high sampling rates generate a large number of samples to
process, affecting speed and power consumption. To overcome
the rate bottleneck, new sampling methods have recently been
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proposed that break the link between radar signal bandwidth
and sampling rate [3], [4], [5]. The sub-Nyquist Xampling
(”compressed sampling”) [6] method used is an ADC which
performs analog prefiltering of the signal before taking point-
wise samples. The compressed samples, or ”Xamples”, contain
the information needed to recover the desidered signal param-
eters using compressed sensing (CS) algorithms.

In [3], sub-Nyquist sampling and delay recovery tech-
niques are presented, along with the design and implemen-
tation of a corresponding hardware prototype. The authors in
[4], [5] expand both the theoretical algorithm and hardware
prototype from [3] to include Doppler frequency recovery.
In [4], a two-stage recovery technique separates delay and
Doppler estimation, performing them sequentially rather than
in parallel, while in [5], both delays and Doppler frequencies
are estimated simultaneously, leading to increased signal to
noise ratio (SNR). The authors’ approach in [5], referred
to as Doppler focusing, combines the received signals from
different pulses, for any Doppler frequency, so that targets
with appropriate Doppler frequencies come together in phase.
For each frequency, a simple one-dimensional CS problem is
obtained and the appropriate delays are recovered.

Several additional works apply CS techniques to radar, but
do not address sampling rate reduction and still sample the
received signal at the Nyquist rate [7], [8]. In [7], the delay-
Doppler plane is discretized and a CS dictionary with a column
for each two dimensional grid point is constructed. The main
drawback of this approach is the prohibitive dictionary size
for any realistic scenario in terms of memory, processing time
and computational complexity. Avoiding this issue, the authors
in [8] adopt a two-step approach, where they first estimate the
delays and then use these to recover the corresponding Doppler
frequencies and amplitudes. Again, this two-stage recovery
approach, which does not benefit from coherent superposition
of the different pulses, does not handle noise well. In [9], a
sub-Nyquist approach is considered, that only recovers delays
and does not treat noise.

In this work, we adopt the approach in [3], [5] for pulse
Doppler radar and propose two main extensions: reduced time-
on-target and cognitive radar (CR) [10]. When considering
a directional antenna, in order to be able to distinguish
between targets located in different directions, the time-on-
target, namely the time needed for discovering a target in a
specific direction, is the coherent processing interval (CPI),
which is equal to the product of the number of transmitted
pulses P and the PRI. The resolution in Doppler frequency is
governed by P , which leads to a trade-off between large P
for high resolution and small P for short time-on-target. We
propose to send the P pulses non-uniformly and exploit the
periods of time where no pulse is sent to a specific direction to
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send a pulse to another one. This way, we can deal with several
directions during the same CPI, reducing the overall time-on-
target. To prcoess the received signal, we combine Xampling
with matrix sketching [11].

In order to increase the flexibility and responsiveness
of the sub-Nyquist pulse radar prototype described in [3],
[5], we consider the CR approach. Haykin [10] defines CR
as a radar system with adaptive transmission and reception
capabilities, namely both the transmitter and receiver are able
to dynamically adjust to the environment conditions. Here,
we extend the sub-Nyquist pulse Doppler radar to allow
for transmission and reception of several narrow frequency
bands, rather than a wideband spectrum. To comply with CR
requirements, the bands support vary with time to allow for
dynamic adaptation to the environment. Moreover, such a
system allows us to disguise the transmitted signal or cope
with overloaded spectrum by using a smaller portion of it.

This paper is organized as follows. In Section II, we present
the radar model and the assumptions used for simplification.
Section III introduces the reduced time-on-target approach
based on non-uniform pulses. In Section IV, we describe our
modified sub-Nyquist pulse radar prototype in the context of
CR. Numerical experiments are presented in Section V.

II. STANDARD RADAR MODEL AND GOAL

Consider a standard pulse-Doppler radar transceiver that
transmits a pulse train

xT (t) =

P−1∑
p=0

h(t− pτ), 0 ≤ t ≤ Pτ, (1)

consisting of P equally spaced pulses h(t). The pulse-to-
pulse delay τ is the PRI, and its reciprocal 1/τ is the pulse
repetition frequency (PRF). The entire span of the signal in
(1) is called the CPI. The pulse h(t) is a known time-limited
baseband function with continuous-time Fourier transform
(CTFT) H(ω) =

∫∞
−∞ h(t)e−jωtdt. We assume that H(ω) has

negligible energy at frequencies beyond Bh/2 and we refer to
Bh as the bandwidth of h(t).

Now, consider L non-fluctuating point-targets, according to
the Swerling-0 model [1], where L, or at least an upper bound
for it, is assumed to be known. The pulses reflect off the L
targets and propagate back to the transceiver. The lth target is
defined by three parameters: a time delay τl, proportional to
the target distance to the radar; a Doppler radial frequency νl,
proportional to the target closing velocity to the radar; and a
complex amplitude αl, proportional to the target radar cross
section, dispersion attenuation and other propagation factors.
The targets are defined in the radar radial coordinate system
and assumed to lie in the radar unambiguous time-frequency
region: delays up to the PRI and Doppler frequencies up to
the PRF. Besides, we make the following assumptions on the
targets location and motion, leading to a simplified expression
of the received signal:

A1 ”Far targets” - assuming the target distance to the radar
is large compared to the distance change during the
CPI, namely αl is constant.

A2 ”Slow targets” - assuming the target velocity is small
enough to allow for constant τl during the CPI.

A3 ”Small Acceleration” - assuming the target velocity re-
mains approximately constant during the CPI, namely
νl is constant.

In these conditions, the received signal can be written as

x(t) =

P−1∑
p=0

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ , 0 ≤ t ≤ Pτ. (2)

It will be convenient to express x(t) as a sum of single
frames

x(t) =

P−1∑
p=0

xp(t), (3)

where

xp(t) =

L−1∑
l=0

αlh(t− τl − pτ)e−jνlpτ , 0 ≤ t ≤ Pτ. (4)

Consider the Fourier series representation of the aligned
frames xp(t+mpτ):

Xp[k] =
1

τ
H[k]

L−1∑
l=0

αle
−j2πkτl/τe−jνlpτ , 0 ≤ k ≤ N − 1.

(5)
From (5), we see that the unknown parameters {αl, τl, νl}L−1l=0
are embodied in the Fourier coefficients Xp[k]. The goal is
then to recover these parameters from Xp[k].

III. REDUCED TIME-ON-TARGET

A. Motivation

The resolution in Doppler frequency in standard processing
is governed by P . More precisely, it is equal to 2π/Pτ .
However, a large P leads to large CPI and large time-on-target.
In this work, we wish to break the relation between CPI and
time-on-target. To that end, we propose to keep P small but
increase resolution by sending the P pulses non-uniformly,
namely allowing for non-uniform time steps between the
pulses. This way, we can keep the same CPI but still send
a smaller number of pulses, reducing power consumption. In
addition, the periods of time where no pulse is transmitted
in a certain direction can be exploited to send pulses in
others, reducing the average time-on-target. In this section, we
describe how a delay-Doppler map can be recovered from non-
uniform pulses, for one direction, without loss of resolution.
In the simulations, we show that 4 directions can be scanned
in a single CPI.

B. Xampling with Non-Uniform Pulses

Suppose that the pth pulse is sent at time mpτ , where
{mp}P−1p=0 is an ordered set of integers satisfying mp ≥ p. In
this case, (1) becomes

xT (t) =

P−1∑
p=0

h(t−mpτ), 0 ≤ t ≤ Pτ, (6)

(3) still holds, (4) and (5) change to

xp(t) =

L−1∑
l=0

αlh(t− τl −mpτ)e−jνlmpτ , 0 ≤ t ≤ Pτ, (7)
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and

Xp[k] =
1

τ
H[k]

L−1∑
l=0

αle
−j2πkτl/τe−jνlmpτ , 0 ≤ k ≤ N−1,

(8)
respectively. We use the same sub-Nyquist sampling scheme
as in [3], [5], where it is shown how we can compute Xp[k] for
some chosen k from the ”Xamples”. In the next sections, we
show how the processing with uniform pulses can be extended
in order to recover the delays and Doppler frequencies in the
non-uniform case.

C. Delay-Doppler Recovery Conditions

Suppose that we limit ourselves to the Nyquist grid so that
τl/τ = sl/N , where sl is an integer satisfying 0 ≤ sl ≤ N−1,
and νlτ = 2πrl/M , where rl is an integer in the range 0 ≤
rl ≤M − 1.

Let X be the K × P matrix with pth column given by
Xp[k]. We can then write X as

X = HFKNA
(
FPM

)T
. (9)

Here H = 1
τ diag (H[k]), FKN denotes K rows from the

N×N Fourier matrix, corresponding to the K selected Fourier
coefficients, and FPM denotes P rows from the M × M
Fourier matrix, indexed by the values of mp, 1 ≤ p ≤ P .
When sampling at the Nyquist rate, K = N and FN is the
standard N×N Fourier matrix. When considering sub-Nyquist
sampling, K < N . Similarly, when considering uniformly
spaced pulses P = M and FM is the standard M×M matrix.
When considering non-uniform pulses, P < M . The matrix A
is an N ×M sparse matrix that contains the value αl at the
L indices {sl, rl}. The goal is to recover A from the K × P
matrix X.

To this end, we use CS algorithms to recover the sparse
matrix A from the measurement matrix X. We first consider

Y = H−1X (10)

and obtain
Y = UAV, (11)

where U , FKN and V ,
(
FPM

)T
.

The following theorem derives a necessary condition on
the minimal number of samples K and pulses P for perfect
recovery in a noiseless environment.

Theorem 1. The minimal number of samples required for
perfect recovery of A with L targets in a noiseless environment
is 4L2, with K ≥ 2L and P ≥ 2L.

Proof: The observation model (11) can be equivalently
written in vector form using the Kronecker product as

vec(Y) =
(
VT ⊗U

)
vec(A). (12)

Here vec(A) is a column vector that vectorizes the matrix A
by stacking its columns and ⊗ denotes the Kronecker product.
It follows that vec(A) is L-sparse, as well as A. In order to
recover vec(A) from vec(Y), we require [12]

spark
(
VT ⊗U

)
> 2L. (13)

From [13] (Theorem 3.1), it holds that

spark
(
VT ⊗U

)
= min{spark

(
VT
)
, spark (U)} (14)

Therefore, we require both

spark (U) > 2L (15)
spark (V) > 2L, (16)

which in turn leads to both K ≥ 2L and P ≥ 2L.

We note that this result was previously proved in [5] in the
context of pulse Doppler radar with uniform pulses.

D. Delay-Doppler Recovery

To recover the sparse matrix A, we solve the following
optimization problem [11]

min ||A||1 s.t. UAV = Y, (17)

where ||A||1 =
∑
i,j |Aij | is the `1-norm of vec(A). In [11],

the authors consider a greedy based approach which extends
the standard OMP to matrix form to solve (17), as shown in
Algorithm 1.

Algorithm 1 OMP for sparse matrix recovery [11]
Input: observation matrix Y, measurement matrices U, V
Output: index set Λ containing the locations of the non zero

indices of A, estimate for signal matrix Â
1: Initialization: residual R0 = Y, index set Λ0 = ∅, t = 0
2: Find the two indices λt = [λt(1) λt(2)] such that

[λt(1) λt(2)] = arg maxi,j |vTj RT
t−1ui|

3: Augment index set Λt = Λt
⋃
{λt}

4: Find the new signal estimate

at = D−1t dt

where Dt and dt are defined below
5: Compute new residual

Rt = Y −
t∑

m=1

at(m)uλt(m,1)v
T
λt(m,2)

6: Increment t and return to step 2 if t ≤ L, otherwise stop
7: Estimated support set Λ̂ = ΛL
8: Estimated signal matrix Â: (ΛL(m, 1),ΛL(m, 1))-th com-

ponent of Â is given by aL(m) for m = 1 =, · · · , L while
rest of the elements are zeros

The following notations are adopted: aTi and aj are the ith
row and jth column of the matrix A, respectively. Moreover,
Dt is a t × t matrix in which the (m, r)-th element is given
by

(Dt)m,r = vTλt(r,2)
vλt(m,2)u

T
λt(m,1)

uTλt(r,1)

for m, r = 1, · · · , t and

d = [vTλt(1,2)
YTuλt(1,1) · · · vTλt(t,2)

YTuλt(t,1)]
T

is a t× 1 vector.

With the noisy version of (11), we aim to solve the
following `1-norm minimization problem

minA

{
1

2
||Y −UAV||2F + λ||A||1

}
, (18)
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where λ is a regularization parameter and || · ||F denotes the
Frobenius norm. The authors in [11] extend FISTA to sparse
matrix recovery with matrix inputs (see Algorithm 2).

Algorithm 2 FISTA for sparse matrix recovery [11]
Input: observation matrix Y, measurement matrices U, V
Output: estimate for signal matrix Â

1: Initialization: A0 = 0,A1 = 0, t0 = 1, t1 = 1, k = 1
2: Initialize: λ1, β ∈ (0, 1), λ̄ > 0
3: while not converged do
4: Zk = Ak + tk−1−1

tk

(
Ak −Ak−1)

5: Wk = Zk − 1
PU

T
(
UZkVT −Y

)
V

6: Ak+1 = soft
(
Wk, λk

Lf

)
7: tk+1 =

1+
√

4t2k+1

2
8: λk+1 = max

(
βλk, λ̄

)
9: k = k + 1

end while
10: Â = A

k

In Algorithm 2, Lf = ||VT⊗U||2 is the Lipschitz constant
of the gradient of 1

2 ||vec(Y)−
(
VT ⊗U

)
vec(A)||22 and

soft(w, λ) = sgn(wi)(|wi| − λ)+, (19)

for i = 1, · · · , N2 where wi is the ith element of w, x+
equals x if x > 0 and 0 otherwise. In the simulations, we only
consider the extended FISTA to recover A from Y, due to
lack of space.

IV. COGNITIVE RADAR

In this section, we consider a radar pulse whose spec-
trum is composed of narrow bands, rather than a wideband
spectrum and show how we can use our system to allow for
a dynamic adaptation of both the transmitted and received
signal spectrum, paving the way to CR [10]. We start by
discussing the selection of the K Fourier coefficients Xp[k] out
of N coefficients. We then briefly describe the radar prototype
presented in [3], designed for delay recovery and upgraded in
[5] to allow for joint delay and Doppler frequency recovery,
and show how we adapted it to CR.

A. Fourier Coefficients Selection

In [5] as well as in Section III-C, it was shown that
the number of measured Fourier coefficients K should be at
least 2L. The question of choosing these coefficients is one
both theoretical and practical. In [14], the authors analyze
the case where the frequency samples are selected uniformly
at random. Unfortunately, random frequency sampling is not
practical in hardware. Some practical guidelines for choosing
the frequencies, suggested in [15], are used in [3] to solve
the trade-off between noise robustness, which is increased by
highly distributed frequency samples [16], and practical hard-
ware implementation. A multiple bandpass sampling approach
was chosen, where four groups of consecutive coefficients are
selected. In the next section, we briefly describe our radar
prototype [3], [5], and in particular the multiple bandpass
frequency sampling.

B. Hardware Prototype

At the heart of our system lies a proprietary developed sub-
Nyquist radar receiver board. This analog front-end is fed a
synthetized RF signal using National Instruments (NI) hard-
ware. The board is composed of four parallel channels which
sample distinct bands of the radar signal spectral content. In
each channel, the desired band of bandwidth Bx is filtered,
demodulated to baseband and sampled at its Nyquist rate. This
way, four sets of consecutive Fourier coefficients are acquired.
In the setup from [3], [5], a signal with Nyquist rate 20 MHz
is considered. Each channel samples a band with bandwidth
Bx = 80 KHz at 250 KHz, resulting in an overall sampling
rate of 1 MHz, namely 5% of the Nyquist rate. The following
combination of four bands was heuristically found to yield
good performance: 590-670 KHz; 690-770 KHz; 1315-1395
KHz; 1574-1654KHz. More details on the hardware design
can be found in [3]. After sampling, the spectrum of each
channel output is computed via fast Fourier transform (FFT)
and the 320 Fourier coefficients are used for digital recovery
of the delay-Doppler map [5].

C. Paving the Way to Cognitive Radar

We now show how our system can be modified to fit CR
requirements and allow for dynamic transmission and reception
of several narrow frequency bands. In the setup described
above, the transmitter broadcasts a wideband signal, which
reflects on the targets and propagates back to the receiver. The
received signal is then filtered before sampling, so that only
the content of a few narrow bands is sampled and processed.
For broadband frequency occupation and power saving, we
propose to transmit only the narrow frequency bands that are
to be sampled. This will not affect any aspect of the processing
since the received signal is preserved in the band of interest.
Let H̃(ω) be the CTFT of the new transmitted radar pulse,

H̃(ω) =

{
H(ω) ω ∈ [f ix −Bix/2, f ix +Bix/2] for 1 ≤ i ≤ Nb
0 else,

(20)
where Nb is the number of filtered bands, Bix and f ix are the
bandwidth and center frequency of the ith band, respectively.
Obviously, the computation of the relevant Fourier coefficients
Xp[k] will not change. Now, to comply with CR requirements,
the bands parameters Bix and f ix vary with time to allow for
dynamic adaptation to the environment. This approach leads
to three main advantages. First, the CS reconstruction allows
for a better resolution. Second, since we only use the received
bands to transmit, the SNR is improved as well. Last, this
technique allows for a dynamic form of the transmitted signal
spectrum.

V. SIMULATIONS

In this section, we present some numerical experiments
illustrating the recovery performance of a sparse target scene.

A. Reduced Time-on-Target

We consider L = 5 targets with delays and Doppler
frequencies spread uniformly at random in the appropriate
unambiguous region, and amplitudes with constant absolute
value and random phase. The pulse Doppler radar transmits P
pulses with bandwidth Bh = 200MHz and PRI τ = 10µsec
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over a CPI of 1msec, namely P = 100 in the uniform case.
In the non-uniform approach, we consider P = 10, 20 and
50 pulses, chosen uniformly at random. The received signal
is corrupted with additive white Gaussian noise (AWGN) n(t)
with power spectral density N0/2, bandlimited to Bh. The
SNR for the lth target is defined as

SNRl =

1
Tp

∫ Tp

0
|αlh(t)|2dt

N0Bh
, (21)

where Tp is the pulse time. We consider a 1 : 10 sampling
rate reduction; we choose K = 200 Fourier coefficients per
pulse uniformly at random, as opposed to the 2000 Nyquist
rate samples per pulse. We use a hit-or-miss criterion as
performance metric. A ”hit” is defined as a delay-Doppler
estimate which is circumscribed by an ellipse around the true
target position in the time-frequency plane. We used ellipses
with axes equivalent to ±3 times the time and frequency
Nyquist bins. Here, the classic time and frequency resolutions,
or Nyquist bins, defined as 1/Bh and 1/Pτ , are 5nsec and
1KHz, respectively. Figure 1 shows the hit rate performance of
our recovery method for different values of P and SNR using
FISTA. Each experiment is repeated over 100 realisations.

Fig. 1. Influence of the SNR on the hit rate rate with FISTA.

We now show the performance of four delay-Doppler maps
recovery. We generate 4 sets of 25 pulses uniformly at random,
which are transmitted in 4 different directions. We observe that
the performance is similar for all directions, in particular for
the first three, as demonstrated in Fig. 2.

Fig. 2. Four simultaneous delay-Doppler maps recovery in a single CPI.

B. Cognitive Radar
We now consider different scenarios, including closed

targets (L = 3 − 6) both in terms of delays and Doppler

frequencies. The pulse Doppler radar transmits P = 100 pulses
with bandwidth Bh = 10Mhz, spread over 4 frequency bands
each with bandwidth Bx = 81KHz, with PRI τ = 1msec and
a CPI of 100msec. The received signal is corrupted AWGN as
in the previous simulations. Figure 3 shows that our approach,
with 4 different combinations of frequency bands, outperforms
the case where a signal is sent over the entire wide band, with
the same total power.

Fig. 3. Delay-Doppler maps recovery with transmitted signal over 4 narrow
bands vs. one wideband.
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